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ON BIAS CORRECTING MOS WIND SPEED FORECASTS 

 

Bob Glahn, David Rudack, and Bruce Veenhuis 

 

 

1.  INTRODUCTION 

 

 MOS temperature, dewpoint, and wind speed forecasts are produced by multiple “linear” 

regression; the predictand is related to a combination of numerical model, and possibly other, 

predictors.  While the relationship is linear in the specific predictors, these predictors can be non-

linear combinations of model and other variables, making the predictand relationship to the 

original model predictors nonlinear, where the non-linearity has been designed to make 

meteorological sense.  In practice, these forecasts tend to have some bias on both a monthly and 

seasonal basis.  Regression equations that produce MOS forecasts give unbiased estimates over 

the period of the developmental sample, but they may have bias over intervals within that 

developmental sample and over other samples including future forecasts.  Given there are no 

changes in the system producing the forecasts (e.g., numerical model, method of data collection, 

etc.), the bias on a seasonal basis is expected to be small, but the overall synoptic patterns are 

different from year to year, so biases may occur. 

 

 Several bias correction methods have been reported in the literature (e.g., Yussouf and 

Stensrud 2007; Woodcock and Engel 2005) that largely eliminate forecast bias; however, 

modification to the forecasts to correct bias can lead to larger mean absolute errors (MAE) and 

degrade other metrics used to evaluate the quality of the forecasts.  Most studies have not dealt 

with MOS operational forecasts.  Glahn (2012; 2014) tested for temperature and dewpoint a 

method that has been used at the National Centers for Environmental Prediction (NCEP) for 

several years (Cui et al. 2012) called decaying average and found that it not only improved bias 

but either improved or did not degrade other performance metrics.  This method was compared 

to a regression method of correction that is employed within the Boise Verify software in use at 

National Weather Service (NWS) field offices, and it was found that the decaying method was 

better and easier to implement (Glahn 2013). 

 

 While wind speed is a quasi-continuous variable like temperature and dewpoint, there are 

questions concerning the applicability of the decaying average method to wind speed.  The 

distribution of wind speed is quite different from the quasi-normal distributions of temperature 

and dewpoint.  The Meteorological Development Laboratory (MDL) has found in the past that 

regression estimates poorly fit the high end of the distribution (i.e., the higher speeds).  In fact, 

an “inflation factor” has been applied to produce forecasts that more nearly match the observed 

distribution since 1975 (Schwartz and Carter 1982; Jacks, et al. 1990).  Even though this 

inflation actually increases the MAE and mean square error (Gilhousen et al. 1979), other scores 

deemed more important, such as threat score of high wind, are improved. 

 

 “Inflation” was proposed by Isadore Enger and first applied by Klein et al. (1959).  Inflated 

forecasts are obtained by subtracting the developmental sample mean from the regression 

estimate, dividing the difference by the (multiple) correlation coefficient, and adding the result to 

the sample mean.  MDL found that this worked well for forecasts above the mean, but those 

below the mean were too weak, so the established practice is to “partially inflate” by using the 

procedure on only those regression estimates above the mean.  Inflation, either full or partial, 
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will increase the variance of the forecasts and increase the mean square error [see Glahn and 

Allen (1966) for details.]  

 

 In this note, we document results of bias correcting with the decaying average algorithm a 

sample of operational MOS 10-m wind forecasts based on NCEP’s Global Forecast System 

(Caplan et al. 1997) and also experimental MOS forecasts developed on a reforecast dataset 

(Hamill et al. 2013). 

 

2.  DECAYING AVERAGE ALGORITHM 

 

 An algorithm for removing bias, called decaying average, has been applied at NCEP to 

model output since 2006 (Cui et al. 2012).  To implement the algorithm, one has only to carry 

forward a delta d and apply it to the current forecast.  Then to prepare for the next forecast cycle, 

the delta would be updated by: 

 

 d (t+1) = (1-α) d (t) +α(F - O)(t) 

 

where d(t+1) is the delta to apply at time t+1, d(t) is the delta applied at time t, F is the forecast 

“verified” by the observation O at time t, and α is the weight to apply to the most recently 

calculated forecast error F - O at time t.  There would optimally be a specific delta for each 

station as well as forecast projection.  When F - O is missing, zero can be assumed (see below). 

 

 In an operational setting, the modification to the MOS forecast does not have to be made 

until the observation is available.  Therefore, the delta for the next forecast can incorporate the 

error of the most recent forecast verifying at that time.  

 

3.  APPLICATION TO OPERATIONAL MOS WIND SPEED FORECASTS 

 

 A choice of a value of α has to be made.  NCEP uses α =0.02.
1
  Glahn (2012; 2014) tested 

values of 0.025, 0.050, 0.075, and 0.100 for temperature and dewpoint and found that values of 

0.025 and 0.050 were best overall, and the difference in results for those values was not great.  

While higher values were more effective in removing the bias both long term and short term, the 

other performance metrics were generally degraded for higher values. 

 

 As a practical matter, there are situations where a station will not report for a considerable 

length of time, or may stop altogether.  MOS forecasts continue because they are based on model 

data that are available.  If the delta computed from the time of the last observation were 

continued, it would likely become inappropriate.  To address this potential problem, when the 

current error could not be computed, it was considered to be zero, so that the decayed average 

would drift toward zero.  In other words, if the past short-term bias is not known, there can be no 

correction for it.  (Biases from surrounding stations could be consulted, but that was not 

addressed and is likely not worth the effort.) 

 

 As another practical matter, in an operational, automated system, the unexpected can happen, 

and in the situation studied here the MOS forecast or the observation could be highly erroneous, 

making the computed error disastrous.  (There may be other error checks in the system, but they 

                                                      
1
 Cui 2012, personal communication. 
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are likely not stringent enough to alleviate a problem here.)  In order to avert potential disaster, a 

cap was put on the forecast error that is exactly 20 kt for a 24-h forecast and 40 kt for an 11-day 

forecast, with the cap defined by a linear line between those two projections and extending on 

either end as necessary.  (For the projections used here, there are no projections outside those 

limits.)  The large differences are still used, but they are capped.  That is, if a 55 kt error occurred 

at 11 days, it would be used as 40 kt.  This would still be a shock to the correction algorithm, but 

not disastrous.  

 

 We tested the decaying average method with a value of α equal to 0.04.  We chose this value 

after carefully considering the results for different values for temperature and dewpoint.  The 

metrics used were not much different for values of 0.025 and 0.05, and were overall not as good 

on either side of these values.  We tested on a sample starting January 1, 2011, and ending May 

15, 2012.  The algorithm was run with a cold start (i.e., a delta of zero) for each station and 

projection and continued uninterrupted until the end.  Then we verified the cool season October 1, 

2011, through March 31, 2012.  As stated earlier, these forecasts are based on the GFS (Caplan 

et al. 1997).  The stations used were in the contiguous United States, the same 1,319 stations 

used previously in testing for temperature and dewpoint.  

 

 Figure 1 shows that bias correction of the MOS operational forecasts reduced the overall bias 

over the 2011-2012 cool season.  This is the expected result; however, a low bias is not 

necessarily a characteristic the MOS wind speed forecasts should have.  The partial inflation 

should produce an overall positive bias in the MOS forecasts, and that is indicated in Fig. 1.  

Because only about half of the forecasts (those above the dependent sample mean) are increased, 

and those near the mean by not much, the overall bias is small and seems plausible.  Because the 

correlation coefficient decreases with projection, more inflation occurs at longer projections, so it 

is not surprising that the bias increases with increasing projection. 

 

 Along with reducing the bias, the procedure also gave a lower MAE (see Fig. 1) and mean 

square error (not shown).  This is also expected.  The regression equations produce the minimum 

mean square error (MSE) on the developmental sample, and inflation will increase that MSE.  

 

 In routine MDL verification, wind speed is categorized for purposes of computing Heidke 

Skill score and Probability of Detection (PoD).  The six categories are shown in Table 1. 
 

Table 1.  Definition of wind speed categories.  

Category Number 1 2 3 4 5 6 

Speed Range (kt) < 5 > 5 and <10 > 10 and <15 > 15 and <20 > 20 and <25 >25 

 

 Figure 2 is surprising.  For the 1-, 2-, and 3-day forecasts, the bias of winds > 25 kt is well 

above unity.
2
   However, by day 6, the bias is below unity and as low as 0.5 at day 11.  The bias 

of winds > 20 kt has a different behavior, and is below unity for all projections.  The bias 

corrected forecasts have lower biases than the uncorrected ones as expected, and are 

considerably below unity.  This is not the characteristic we have been striving for.  The behavior 

                                                      
2
 Bias for a forecast treated as continuous for verification is defined as the average arithmetic error and has a 

baseline of zero.  When a variable is treated as categorical and counts are involved, bias is defined as the number 

forecast divided by the number observed, and has a baseline of unity. 
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for winds > 25 kt shown here for the cool season is the same for the summer season of 2011 (not 

shown). 

 

 It is puzzling why the bias for winds > 25 kt changed so much by projection for inflated 

forecasts.  In looking back at some old wind verifications, it appears the stronger winds were also 

underforecast.   This indicates the inflation procedure, while still very helpful, may not be as 

effective as had been thought. 

 

 Figure 3 indicates the bias was below unity for wind speed forecasts < 5 kt.  These forecasts 

should mostly be below the mean, and therefore not modified by partial inflation.  Bias 

correction increases the bias and brings it closer to unity.  

 

 The PoD is the fraction of the time observed strong winds were correctly forecast.  It is a 

measure of accuracy, and the drop with projection shown in Fig. 4 reflects the loss in accuracy.  

Figure 4 also shows that the bias correction reduced the PoDs of strong winds by a substantial 

amount at all projections.  

 

 Figure 5, similar to Fig. 4, shows that bias correcting the forecasts decreased the Critical 

Success Index (CSI) (also known as the Threat Score) for speeds > 20 kt and > 25 kt, except for 

speeds > 25 kt at short projections.   Decreasing the accurate forecasting of strong winds is not a 

desirable characteristic of a postprocessing system. 

 

 The bias correction did not change the fraction correct or Heidke Skill Score (SS) by much at 

short projections (see Fig. 6), but generally improved them at long projections.  This is because 

the bias correction puts more forecasts into the more frequent, easier to forecast, categories.  

These scores relate to the complete 6 X 6 forecast/observed contingency table.  The number 

correct treats each category the same and does not consider near misses.  The Heidke SS is the 

fraction of possible improvement of the number of correct forecasts of the system being verified 

over a random forecast, given the observed frequencies.  It, too, heavily weights the more 

frequent categories and gives no credit for near misses.  The Gerrity SS (Gerrity 1992) is an 

equitable score that gives high weight to a rare category and considers the closeness (in number 

of categories) of the forecast to the observed.  While this is not the only such equitable score, and 

the assumptions underlying the calculation of the utility matrix it uses are somewhat arbitrary, it 

seems a reasonable attempt to measure the overall goodness of a set of forecasts, taking into 

account the importance of rare events.  Figure 6 shows that bias correcting decreases the Gerrity 

SS at all projections.  

 

4.  APPLICATION TO ENSEMBLE-BASED EXPERIMENTAL WIND SPEED FORECASTS 

 

 To further illustrate the effects of the decaying average algorithm on wind speed forecasts, 

we created and verified MOS forecasts based on the GEFS reforecast ensemble dataset created 

by Hamill et al. (2013).  This dataset is an 11-member ensemble initialized once a day at 

0000 UTC.  Experimental warm and cool season MOS wind speed equations were developed for 

projections 48, 120, and 192 hours (8 days) for each of 334 stations in the contiguous United 

States, Hawaii, Alaska, and Puerto Rico.  These 334 stations were carefully selected by MDL for 

their quality of observations and uniform spatial density and have been used for testing and 

verification for a number of years. 
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 The 5-year developmental sample for the cool season spanned the months October through 

March for the years 2007 through 2012; the warm season was comprised of April through 

September of 2008 to 2012.   The development paralleled that for development of the operational 

equations as to process, selection of predictors, etc.   The predictors were the means of the 

11 members of the ensemble, rather than from individual members, a technique used previously 

(e.g., Glahn et al. 2009; Wagner and Glahn 2010; Veenhuis 2013) and preferred by Unger et al. 

(2009).  The test period for each season immediately followed the last season of the 

developmental period, being October 2012 through March 2013 for the cool season and April 

through September 2013 for the warm season. 

 

 Figures 7, 8, and 9 show for 48-, 120-, and 192-h forecasts, respectively, for the cool season 

test sample the MAE (across the top) for (1) the (raw) GEFS forecasts, (2) the bias corrected 

(BC) GEFS forecasts, (3) the (uninflated) MOS forecasts, (4) the partially inflated MOS 

forecasts, and (5) the bias corrected, partially inflated MOS forecasts.  Notably, bias correcting 

raw model output reduced the MAE, and MOS gave further improvement.  Inflating the MOS 

forecasts increased the MAE as expected, and bias correcting the inflated forecasts decreased the 

MAE. 

 

 The bar graphs in these figures show the sample counts (frequencies) in each of the six 

categories of wind speed shown in Table 1 (note the ordinate scales are different for the different 

categories) for each of the five forecast systems enumerated and described above; in addition, the 

observed frequencies are shown.  Of the five categories, those for the two higher categories are 

the most important.  An obvious conclusion is that both the GEFS and uninflated MOS forecasts 

had far too few strong winds, and the effect was much more pronounced for the longer 

projections.  Consistent with what was found for operational MOS forecasts, described in the 

previous section, bias correcting these inflated experimental forecasts reduced the frequency of 

strong wind forecasts.  Also consistent with the operational MOS forecasts, inflation does not 

produce as many strong winds as are observed at the longer projections. 

 

 Figures 10, 11, and 12 are the same as the previous three, except for the warm season.  The 

conclusions as to MAE are the same as for the cool season.  The underforecasting of strong 

winds is even more pronounced in the warm season than the cool season, which is reasonable 

because of synoptic considerations. 

  

 5.  SUMMARY AND CONCLUSIONS 

 

 The decaying average algorithm has been applied to operational MOS wind speed forecasts 

and to experimental MOS forecasts based on an ensemble reforecast dataset.  The operational 

forecasts have been partially inflated to increase the higher wind speeds.  This is necessary for 

them to be operationally useful.  The inflation increases the MAE and overall bias, but improves 

scores that emphasize the skill and accuracy of strong winds. 

 

 The scores computed and shown for one 6-month cool season of MOS forecasts were about 

as expected, except that the bias dropped off unexpectedly with projection.  The reason for this is 

not known.  It is possible the GFS model winds, on which MOS is largely based, had lower 

biases at longer projections in the test sample than in the developmental sample.  However, the 

same behavior was present with the experimental GEFS-based forecasts. 
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 The bias correction behaved about as expected; the overall bias was generally improved, but 

scores that emphasized the stronger winds—the most important ones—were worse.  It is 

concluded that this simple bias correction method applied to inflated MOS forecasts would 

decrease their usefulness to forecasters and other users. 

 

 If bias correction were to be done, it should be done before the inflation step, and then 

inflation applied.  This should help with emphasizing stronger winds, and the overall bias might 

be improved.  However, the bias of wind speed forecasts is a rather small component of the total 

error, especially at the longer projections.  

 

 For the experimental MOS equations based on the ensemble means of the GEFS reforecast 

dataset, we computed MAEs and forecast frequencies in several categories of wind speed.  The 

forecast frequencies, when compared to observed frequencies, indicate category bias.  The 

primary conclusion is that raw model winds, either bias corrected or not, and MOS forecasts 

based on them are extremely low biased for winds > 25 kt and even > 20 kt, especially for the 

longer projections.  Such forecasts would likely not be useful to anyone. 

 

 In keeping with the results on operational MOS forecasts, the low bias for strong winds is 

present in the longer range forecasts.  This brings into question the long held opinion that bias 

correction produces as many strong winds as are observed.  This belief has theoretical 

justification, but only for normally distributed variables. Because of the fat right tail of wind 

speed distributions, it is possible the partial inflation would give better results if done above the 

median rather than above the mean. 
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Figure 1.   Bias and MAE of MOS operational, partially inflated forecasts and those forecasts 

bias corrected for the 6-month test period October 1, 2011, through March 31, 2012.  Bias is 

defined as forecast minus observed.  Projections are shown at 12-h intervals.    
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Figure 2.  Bias of operational MOS forecasts > 20 kt and > 25 kt for the 6-month test period.  

Bias is defined as the number forecast in the category divided by the number observed in that 

category.  Projections are shown at 24-h intervals (labeled in days for clarity). 
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Figure 3.  Same as Fig. 2 except for bias of forecasts < 5 kt. 
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Figure 4.  Same as Fig. 2 except for PoD for forecasts > 20 kt and > 25 kt. 
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Figure 5.  Same as Fig. 2 except for CSI for forecasts > 20 kt and > 25 kt. 
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Figure 6.  Same as Fig. 2 except for fraction correct, Heidke SS and Gerrity SS. 
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Model GEFS BC GEFS MOS MOS(I) BC MOS(I) 

MAE 3.47 3.04 2.56 2.69 2.64 

 

 

 
 

Figure 7.  Cool season MAEs and frequencies for five different sets of 10-m, 48-h forecasts:  

(1) GEFS, (2) BC GEFS, (3) MOS based on GEFS, (4) partially inflated MOS forecasts, and 

(5) BC MOS partially inflated forecasts.  Also shown in the bar graphs (rightmost column) are 

the corresponding frequencies for observations.   Note that the ordinates are different for the 

different categories. 
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Model GEFS BC GEFS MOS MOS(I) BC MOS(I) 

MAE 3.76 3.50 3.10 3.31 3.24 

 

 

 
 

  

Figure 8.  Same as Fig. 7 except for the 120-h projection.  
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Model GEFS BC GEFS MOS MOS(I) BC MOS(I) 

MAE 4.18 3.93 3.50 3.97 3.83 

 

  

Figure 9.  Same as Fig. 7 except for the 192-h projection.  
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Model GEFS BC GEFS MOS MOS(I) BC MOS(I) 

MAE 3.08 2.81 2.52 2.70 2.64 

 
 

Figure 10.  Same as Fig. 7 except for the 2013 warm season.  
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Model GEFS BC GEFS MOS MOS(I) BC MOS(I) 

MAE 3.44 3.13 2.80 3.03 2.96 

 

           

            Figure 11.  Same as Fig. 8 except for the 2013 warm season. 
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 Figure 12.  Same as Fig. 9 except for the 2013 warm season. 

 

 

 


